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Note 

An Accelerated Computing Tec~~iq~~ 
for Steady Fluid Flows 

1. INTRODUCTION 

A number of numerical methods for solving the incompressible Navier-Stokes 
equations have been presented and many studies have been made of the two- or three- 
dimensional viscous fluid flows [l-9]. In respect to differencing technique, there are 
the implicit scheme such as the ADI method [ 1 ] and the explicit scheme such as the 
MAC method [2]. For the large geometry problems, the former has a disadva~- 
tageous restriction on the length of matrix elements and the latter requires a lar 
computing time. 

Recently, there has been a growing need for the application to steady fluid flow 
problems in the complicated and large geometry such as a wire-spaced fuel 
bundle flow in connection to the detailed hot spot temperature analyses, where the 
cell size in the principal flow direction is usually set to be several times of the cell 
sizes in the transverse flow directions [lo, II]. 

In case of the steady flow problems, it is reported by Hirt [9] that it is possible to 
speed up the asymptotic attainment of steady flow by setting the mass convergence 
criterion to be less severe. Patankar and Spalding [6] have presented a numerical 
method for the steady three-dimensional viscous flow with one primary flow directiugh 
by a parabolic flow approximation. 

However, in the usual method the pressure and mass convergence is slow weep t 
cell size in the principal flow direction is large compared to the cell sizes in the 
transverse flow direction. 

In this note, an accelerated computing technique is presented for solving the steady 
flow problems. The technique presented here is a slightly modified type of Hirt and 
Cook’s method [5] (hereafter referred to the SOLA method) based on Harlow and 
Welch (so-called MAC method) [2]. Th e essence of this technique consists in 
introducing directional velocity-correction factors and cell boundary ~~~~itio~ 
parameters to achieve the mass conservation in a considerably small number of 
pressure iterations. 

In order to demonstrate the effectiveness of this technique, its perforrna~~~ is 
compared with that of the SOLA method for a three-dimensional steady floiv ~rob~~rn 
within a duct with an internal obstacle. 
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2.1. Basic Equations 

2. TECHNIQUE 

The SOLA method, which is a simplified version of the MAC method, is a 
technique for solving the time-dependent Eulerian equations of momentum conser- 
vation and the mass conservation. 

First, the time advanced velocity components (u$, z$j+,L, WY,::) are calculated 
from the differential equations of momentum conservation approximated by the 
forward differencing with respect to time and a combination of the central and the 
upstream differencing with respect to space. Superscript n is used for the time level at 
which quantities are evaluated and subscripts i, j and k denote the cell location in x, 
y and z directions, respectively. 

Second, the pressure field py,j’,k is simultaneously determined such that the time 
advanced velocity components obtained from the first step satisfy the mass conser- 
vation equation by introducing the relaxation parameter dZij,k and the following 
iteration formulae for the Z+ 1 iteration: 

(PY,$” l = (PY,l? + @P;,;x (la> 

(6pil~:)’ = -dZi,j,k(V ’ Vzj’,~)‘. (lb) 

The velocity components are adjusted to reflect this pressure change as follows: 

here 5 is 0 or -1 and [ is defined such that: 

if r= 0, 5=+1, 

if <=-1, (-=- 1. 

In Eq. (2), p is the fluid density, 6t is the time increment, and 6x, Sy and 6.z are the 
space increments in the x, y and z directions, respectively. The relaxation parameter 
dti,j,k is determined such that above updated velocity divergence vanishes as follows: 

Ati,j,k = w@latA), (34 

A=-&~i+lJ,k + Yi- I,j,k) + $$ (Yi,j+ I,k + Yi,.i- I,k) 

+ & (Yi,j,k+ 1 + Yi,j,k--lh (3b) 
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where (o is an accelerating factor explained in the next section. Yi,j,k’s are the cell 
boundary condition parameters, which are 1 for a fluid cell (i, j, k) and 0 for 
boundary cells. By introducing these parameters, the cell pressure can be suitably 
corrected in such a way as to directly reflect the boundary condition for the normal 
velocity component in each mass continuity iteration, while in the SOLA method the 
cell pressure is so adjusted one step later than the each iteration as to reflect the 
boundary condition. For this reason, the yi,j,k ceil boundary condition ap~li~a~~~ is 
effective in speeding the iterative convergence. When Y~~,~‘s are all unity, 
~Qrres~onds to Eq. (6) in reference [5], in which all cell pressures are adjusted 
same relaxation parameter. 

C,, C, and CZ in Eq. (3) are the velocity-correction factors (referred to C factors 
in abbreviation) introduced in this note. The usual method correspon 
{C, = C, = C, = I}. In the usual method the pressure and mass convergence is slow 
when the cell size in the principal flow direction is large compared to the cell size in 
the transverse direction. When the transverse cell size is small the relaxation 
parameter is small as can be seen from Eq. (3). Thus, it is u~derrelaxi~g vari~t~~~s in 
the principal flow direction. Namely, in the usual method the relaxation factor is 
limited by the smallest cell size, and contains no information regarding direction for 
the principal pressure variation. The introduction of the velocity-correction factors 
inserts this information into the relaxation parameter. One-dimensional flow in a long 
pipe can be considered as a useful limiting case. If the radial zone sizes are small 
compared to their axial lengths the iteration will be severely limited, even though no 
radial pressure variation exists in the final answer. Letting the axial C factor 
approach infinity in this case reduces the problem to one-dim$~sional axial flow as 
desired. This is a simple example to show why the i~t~od~~tio~ of C factors has 
merit. 

2.2. Stability and Convergence Rate 

Introduction of the velocity-correction factors yields the following discrete Poisson 
equation for the pressure which corresponds to the equation derived by Viecelli [4]: 
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where SF,j,k is a source function in terms of the old velocity, advection, viscosity and 
body force. In Eq. (4), the pressure of the cells (i - 1, j, k), (i, j - 1, k) and (i, j, 
k - 1) is replaced with the latest values at the (E + 1)th iteration while sweeping in 
the direction of increasing i, j and k in use of the successive over relaxation method. 

Based on a von Neuman stability theory, the amplification factor 1 G(8,, 0,,, S,)i 
(referred to 1 GJ factor in abbreviation) defined as Eq. (5a) is given by Eq. (5b) in 
inner region : 

(5b) 

= l-2a 
I ( 

&+3+g4/2+2a /l-24&+&+$)/ 

* I 

c, cos 8, c, cos 8, c, cos 8, 
6x2 + 6y2 + 6z2 f +a2~(-$)2+(&)2+(~)2 

+2 
cc 

-2L-L cos(3, - 8,) + 2 
cc 

6x2 6y2 
-.-x-L cos(6, - e,> + 2 & 
6y2 6z2 cos(6, - 3,) 9 

I 

= I-2a 
I ( 

c, cos e, c, cos e, c, cos 8, 

+ a2 p;“: ($B$ lsz2 

) 

+ 2--- 
cc 

cxcy cos(8, - 3,) + 2 -2-L 
6x2 dy2 6y2 6z2 

cos(8, - 3=) + 2 -g$ cos(@, - 6,) 3 
I 

with a = AT at/p. In Eq. (5a), S,, 0, and 19, are x, y and z components’of phase angle 
in Fourier series, and (V(@,, 8,, 0,))’ and (V(6),, By, 6,))‘+ ’ are the amplitude of the 
Fourier component corresponding to the phase angle (OX, B,,, 0,) at the Zth and 
(I + 1)th iteration, respectively. ( GI factor depends on space increment ratios (6y/&, 
6z/6x) and C factor ratios (C,,/C,, C,/C,). For I G(B,, BY, 8,) < 1, the Fourier 
components diminish with increasing 1. The smaller the amplification factor, the 
faster the convergence of the numerical solution. The inequality ) G(B,, BY, B,)I < 1 
leads to w < 2 for all phase angles. It is usually safe to assume that the optimum 
value of co for most rapid convergence occurs fairly close to the stability limit and to 
start calculations with w at about 0.9 a,,,,, [4]. 
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Mow we will consider the dependence of the convergence rate on the C factors. 
mentioned in the Introduction, the cell size 6.z in the principal flow direction is 
usually large compared to the cell sizes in the transverse flow directions in fuel pin 
bundle flow analyses. Hence the dependence of /G/ factor on C, factor has been 
examined numerically by using a computer for the case {SX : Sy : 6z = I : I : 5 ) with 
w = I.8 in (4 x 4 x 7) cells and (12 x 12 x 12) cells including boundary cells. 
result has shown that the amplification factor j G] is a concave function with res 
to C, for many phase angles except for some cases where j G/ is a very gr~d~aiIy 
increasing function, the values of which are, of course, less than 1 for all C, values. 
According to Frankel [ 121, the convergence rate of the Fourier component with. the 
minimum or maximum wave number is most slow. The present results have shown 
that the amplification factors with the minimum wave numbers for x and y 
components (corresponding to (6, = 8, = x/IO) for (12 x 12 x 12) cells) and with the 
maximum wave numbers for x and y components (corresponding to (0, = 
(12 X 12 X 12) cells) are both concave functions for all 6, values with respect to CZ 
values such as C, > 1, as shown in Fig. 1 for the case of (12 x 12 x 12) cells. 

The optimum values of C factors for most rapid convergence strongly depend on 
the cell size ratios but weekly depend on the number of cells according my 
numerical experience. Therefore, in practical application, we have only to fi the 
optimum values at the first time cycle for a small number of cells by means of survey 
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0.6 
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FIG. 1. Dependency of amplification factor jC(S,, 6,, S,)i on C, factor. The numbers in parenthesis 

(G ay, n,) are defined as (0, = (n/10) n,, 8, = (z/10) ny, 8, = (n/IO) n,). 
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calculation on C factors under the same cell size ratios as those of large geometry, 
and those optimum values can also be used for the large number of cells without 
much loss of the merit in use of C factors. 

3. TEST CALCULATIONS AND RESULTS 

To demonstrate the effectiveness of this technique, test calculations on a square 
cross-sectional duct flow with an internal obstacle were carried out. A certesian mesh 
is used that is the same as the (4 X 4 X 7) cells used in the previous section with 
6~ = 10 cm. An internal obstacle region is defined at the cell (i = 2,j = 2, k = 4). The 
non-slip condition on the wall and the continuative outflow condition are imposed. 
The mass convergence criterion is 10P3/sec. The primary flow direction corresponds 
to the z direction and the inlet velocity ~~,~,i is 5 m/set. For this test calculation, the 
optimum value of C, was about 200 with C, = C, = 1 as determined from survey 
calculations. 

At every time cycle over the beginning 5 cycles, iteration numbers required in the 
mass convergence calculations are shown in Table I, in which the cases A, B and C 
correspond to {C,= 1, C,= 1, C, = 1) with no use of Y~,~,~, {C,= 1, C,= 1, 
C, = 200) with no use of yi,j,k and {C,= 1, C, = 1, C, = 200) with Yi,j,k, respec- 
tively. At the first time cycle, the case B required an iteration number of 81 which is 
about l/50 of that required in the case A. The iteration number for the case C is 
further decreased to about l/2 of that for the case B. 

After 55 cycles of time advancement, almost steady flow solutions were obtained. 
At this time cycle, fluid velocity components (w~,~,~, w~,~,~, ZQ,~,~) of typical cells 
and their normalized deviations from those of the case A are shown in Table II, 
where w3,3,49 w2,2,5 and u2,2,5 correspond to the maximum primary component, the 

TABLE I 

Iteration Numbers Required in the Mass Convergence Calculations 

Cycle no. 
of time Case A 

Iteration number 

Case B Case C 

1 3931 81 43 

2 3543 64 34 

3 896 45 21 

4 663 39 24 

5 515 33 22 
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TABLE II 

Velocity Components of Typical Cells 
and Normalized Deviations from Those of Case A 

Velocity and deviation” Case A Case B Case B’ 

w?,~.~ fm/sec) 

- a A(%) uk3 4 
a 

-yq-(46) wj3,-a 

w~,~,( (m/set) 

-2-L! w2 2 5 
b 

(%) 

*(%) wz 2 5 

u2.2,5 (m/=1 

- %25-C (%) 

7.29318 7.3015 1 7.29164 

0 0.114 6.12 x to-? 

0 0.125 8.92 x IO-' 

1.88793 1.89690 1.89069 

0 0.475 0.146 

0 0.179 5.52 x lo-’ 

-0.188832 -0.189694 -0. I89044 

0 -0.456 -0.112 

0 -1.72 x 1O-2 -4.24 x lo-? 

‘a, b and c correspond to w~,,,~, w*,~.~ and u~,~,~ calculated in the case A, respectively. (wJ is the 
bulk mean velocity at k in the z direction, that is, (wq) = 6.67 m/set and (wj) = 5 m,/sec. 

minimum primary component and the maximum secondary component of velocity, 
respectively. In the case B’, after 50 cycles of time advancement under {C, = 1, 
C, = 1, C, = 2001, the time advancement calculations were continued until 55 cycles 
of time with (C, = 1, C, = 1, C,= 1). The deviations of w~,~,~ from that of the case 
-4 are about 0.1% in the case B and about 0.06% in the case B’. The normaliz 
deviations of w*,~,~ to that of the case A are 0.475% in the case B and 0.146% in t 
case B’ but those deviations to the bulk mean velocity are 0.179% in the case 
5.52 X lo-*% in the case B. The normalized deviations of u~,~,~ to that of the 
are -0.456 % in the case B and -0.112 % in the case B’ but to the bulk mean 
velocity negligible small in both cases. Little difference in the converged solutions 
between case A and case B is seen in Table II. The reason for this is that the first 
guess for the velocities, at the beginning of each cycle and before the pressure 
iteration, contains the correct pressure gradient terms. The modified iteration is only 
used to adjust pressures to insure mass continuity. When steady state convergence is 
obtained the first guess for the velocities is the correct steady state result. 
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